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The use of gyroscopes for attitude cantrol and stabilization of space vehicles in the case 
of large angles is considered. 

The simplest formulation of this nonlinear problem is investigated. An artificial earth 
satellite is equipped with a balanced two-axis gyro in a gimbal mount which acts as its 

final control element. The center of inertia of the gyro coincides with the center of 

inertia of the satellite body, and the axis of the outer gimbal (output axis) is parallel to 

one of the principal axes of inertia of the vehicle, It is assumed that the system is not 
acted on by external moments, so that its moment of momentum vector remains constant. 

After stabilization of the angular position of the satellite on its orbit. i. e. after elimi- 

nation of the initial angular velocities of the system, the entire moment of momentum 

is borne by the gyro wheel. The system can be rotated by altering the position of the 
gyro wheel axis (spin axis) ; the controls are the moments M, and Ma acting on the 
gimbal axes. The angles of rotation a and B of the gimbals are called the “control 
angles”. 

Although the results obtained are largely qualitative in character, they can be used 
in conjunction with the iteration method to construct a more exact solution. 

One of the two controls in the control mode just described, namely fi , is varied relay 
fashion. The angle a, i. e. the rotation of the outer gimbal between the initial and final 

rapid rotations, is varied periodically and depends on the angle of nutation fi and on the 
inertial characteristic of the system. 

During guidance the z -axis describes looped ( n < 0) or wavy (n> 0) curves on a 

fixed unit sphere ; these curves are bounded by two parallels for which sin 6 = f n. 

The self-intersection points of the loops or the inflection points of the wavy curves cor- 
respond to 6 = 6,. 

Let the initial position of the satellite body be known and let the purpose of control 
be to achieve a certain attitude change, i. e. let the final position of the vehicle in 
space be specified. As the spin axis rotates in the satellite body and in inertial space, 
the satellite body acquires an angular velocity in accordance with the law of conserva- 
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tion of the moment of momentum. The law of variation of the controls il!f, and MB and 
the rotation time must be chosen in such a way that the system experiences the required 
attitude change. The problem is obviously not single-valued. The optimal problem is 

formulated with the rotation time as the optimality criterion. There are no restrictions 

either on the controlling moments M, and MS or on the guidance time, which in this 
case likewise plays the role of a control and is not independent of the required rotation. 

1. The equation, of motion. We introduce two coordinate systems (Fig. 1). 
The right-handed system 0xy.z is attached to the body, its origin lies at the center of 

mass 0; the x -, y-, and z-axes coincide with the principal central axes of inertia of 

the body. 

The system Ogr& is a right-handed coordinate system with its origin at the same point 
0; the E -, q.-, and c-axes retain their direction 

in inertial space. The position of the attached coor- 

dinate system relative to the inertial system is 
characterized by the three Euler angles 6, cp, I#. 
The initial position of the body is defined by the 
angles GO, ‘pa, &, and its final position by the 

angles fir, (ply $r. Without limiting generality 

we can assume that the axis 05 coincides with 
the initial position of the spin axis when both gim- 
bals and the body are in a stationary position. In 

terms of the chosen coordinate systems this means 

that the line of nodes On coincides with the axis 

of the casing (Fig. 1). 

Fig. 1 
let L denote the kinetic moment of the system 

relative to the point 0, let D be the tensor of 

inertia of the wheel (for simplicity we shall assume that it is spherical, denoting the 

moment of inertia relative to any central axis by D) , and let osbe the absolute angular 
velocity of the wheel when the body is in a stationary position. These quantities are 
related by the expression L = D.o, (1.1) 

Rotation of the gimbals is accompanied by rotation of the body, and the moment of 
momentum L remains constant; its absolute value L = Duo, and L coincides with 
5 . Denoting the tensor of inertia of the body in the coordinate system xyz by J , the 

angular velocity of the body by o , and the absolute angular velocity of the wheel for a 
moving body by or(neglecting the gimbal masses), we obtain 

Do, = Jo + Do, (1.2) 

If A, B, c are the principal central moments of inertia of the system, then after 
several operations we can express (1.2) as 

A6’ cos cp + A$’ sin 6 sin cp - DfJ’ cos a + Do0 sin b sin a =- 

- Do0 sin 6 sin cp - 

- B @-sin cp + B$' sin 6 cos cp + D@*sin a + Da0 sin p MIS a = 
X Do0 sin 6 cos cp (1.3) 

CT' + CI/J’COS 6 -Da’ + Do0 cos p = Do0 cos 6 
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In order to obtain the closed set of equations of motion we must also write out the 
equations for the variations of the angles a and fi under the action of the controlling 
momen~~~and MB.The theorem on the variation of the moment of momenmm applied 
to the gyroscope yields 

I’~‘+w*xI’~=M~+M~ (I.41 

where l’s is the absolute moment of momentum of the gyro wheel relative to the point 
0, and o,is the angular velocity vector of the coordinate system in which the derivative 

ra* is taken. In terms of projections on the buter and inner gimbal axes, Eq. (1.4) yields 
the relations 

M, = - DCC” + Dtp” + DQ” - DW$‘sin 6 - D@%* sin (cp - a) f 

$- Dv$‘sin 6 cos (q~ - ~)+D~~~sin~cos(~-~)+ 

+ Dwo$\l’sin @sin 6 sin (cp - a) - Dosp’sin p 

~~=DP”-D~cos(cp-_)-_~“sin6sin(q,--)f (14 

-j- Dw (i-f? - 3’) sin (q - a) - D$’ (rp’ - d) sin 6 cos ((p - a) - 

- DWQ’ co.5 6 sin (;p - a) + Do& cos p sin (cp - a) - 

- Do,** cos p sin fi c.os (cp - a) + Doa** sin 13 cos 6 -+- Doa (cp” - a’) sin p 

Equations (1.3) and (1.5) form the closed set of equations of motion of the system 
and gyro wheel in the case where the expressions for the controlling moments M, and 

Ma are specified. Since we shall be investigating the optimal problem, it is expedient 
at this point to make certain slmp~fi~ations in order to lower the order of this set of 

equations. Linearizing Eqs. (1.3) under the assumption that the variations of the angles 

a, p and of the Euler angles are small, as is in fact the case over a very small time 
interval At, we obtain the following set of equations: 

A@=Do 0 (+-+) sin@sinq;,cosa,At + 

+D( 
$,w acoscp + --&inasinq)Aa - 

- Dq,sin 13 
i 
$ sinacosg,- $cosasincp At 

i 

Acp =T: $wO cos 6At - + wO cos @At + $ Aa - 119 cos 6 (W 

A$==--&-[DAp(+cosccsincp-- &incrcoscp)- 

-Do,sinp -$ 
i, 

sindsinq + $COSCCCOS~I 
i 

At +- 

-f- Do,,sinfi +sinap + $ COS’ Cp 
)I 

At 

Here A@, Aqt, AI# are the increments of the Euler angles and AU, Afi are the con- 
trol increments occurring with rapid rotation of the gimbals over a very short time inter- 
val At such that w,,At is commensurate with Aa and Afi. 

We know from the literature that the ratios D / A, D / B, D / C are small quan- 
tities on the order of l/100. If the gimbals are rotating slowly, i.e. if dand v are small 
compared with wo. the terms containing the expressions Dd and Dg’ can be neglected 
in the first approximation in comparison with the other terms in (1.3). Equations (1.3) 
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can then be solved independently of (1. 5) by considering the kinematic quantities p 
and cz as the controls instead of the true controls, i. e. of the moments M,and ikf . Essen- 
tially, the problem reduces to the determination of the controls CC and p from the con- 

ditions imposed on the required final rotation and on the minimization of the rotation 

time. It is then possible to determine the controlling moments from Eqs. (1.5) and to 
proceed with more exact solution of the problem. 

According to Eqs. (1.6), during rapid rotation of the gimbals large changes in the angles 

cz and b (i. e. ‘a’ and fi’ commensurate with WO) correspond to insignificant changes of 

the Euler angles which become smaller as the rate of rotation of the spin axis increases. 
An exception to this is the highly specific case where 6 = 0. A more exact quantitative 
investigation of this process following solution of the problem under consideration yields 

corrections in terms of small angles. 
This formulation enables us to neglect the changes in the Euler angles associated with 

rapid rotations of the spin axis; in the case of slow rotation of the spin axis the equa- 

tions of motion of the supporting body assume the simplified form 

F=Doo sin6sincpcoscp f Do,sinP 
( 
-$ sinacoscp + 

+ -$-cosasincp 
) 

cp’ = Do0 
( 
s - +sin2 cp - -& co9 (p) cos6 - Do,-& cos p + 

+ Doosin/3ctg4(~sinasin~+-$cos~cos(P) 

I#* =- Doo(f sin2cp + -&cos2, 
) ) 

(1.7) 

2, Solution of the optimal problem, Equations (1.7) become simpler 
if the moments of inertia A and B are equal. In this case we have 

V = sin fi sin (cp - a) 

cp’ = (E - 1) cos 6 - E cos fl + sin fl ct,g 6 cos (cp - a) (2.1) 

$.=1_ sin p cos (cp - a) / sin 6 

The above expressions were obtained by setting z = I,t / _4 ; however, we have left 
the symbols for the derivatives unchanged, even though 6’, cp’and 4’ are now deriva- 

tives with respect to z. The quantity & = A / C is called the “inertial characteristic”. 

We note that this case (i.e. the case where the inertial ellipsoid is an ellipsoid of revo- 
lution) obtains in most of the satellite designs described in the literature. 

We now pose the optimal problem with the aid of the maximum principle. The Hamil- 
tonian of the problem can be written as 

H = wp* + rp’p, +$*P, (pi= - dH/dti, p; = - i?H/b’q, p+,’ = - aH/W) 
The optimality conditions are 

BH/da = 0, 8H/b’p=O 

The cyclical character of the coordinate 9 implies that 

pJI’ = 0, p+ = const = p, 
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and the fact that the quantities cp and a occur together only (i. e. only in the combina- 
tion ‘p - a) in (2.1) imply that 

C = - 
13H/i3cp = aH/da = 0 or p,’ = 0, p, = const = h 

The optimal problem becomes considerably simpler if we do not impose restrictions 
on the finite characteristic rotation angle cp and set h E (I. Geomertically this means 

ensuring that the required orientation of the principal axis of inertia z of the system 
(which is the axis of symmetry of its ellipsoid of inertia and the gyro output axis) is 
achieved in the shortest possible time. In other words, we are required to solve the prob- 
lem of orienting the plane ZXJ in the minimal time. 

The Hamiltonian in this case can be written as 

H = 6’~~ + WP, 
or 

H = sinpsin(cp - a) pa + [I - sin p cosss~6u)] p (2.2) 

Optimization with respect to the angle a on the basis of the condition 8H / da = 0 
yields tg (cp - 4 = - 1 I p pa sin 6 

The condition aH / if+3 = 0 implies that 

cos p cos (cp - a) [pe2sin26 + PI = 0 

Hence, cos p = 0. L.et us assume that sin p > 0, so that b = l/sn. To find pa 
we can make use of the integral H = 1. 

Eliminating the control a form H and setting fi = l/z~, we obtain 

pe=&-&~l/(l-p)2sinB6-~pa (2.3) 
Here it is convenient to set 

ns = $ / (1 - p)“, ?Z=p/ll-pi 

In this notation the angle cp - a is defined by the expressions 

cos(q-a)=--&, sin(cp - a) = *-& I/-sin2 43 - n2 (2.4) 

The signs in front of paand sin (cp - a) must be determined from the condition of 

maximum H. If 6’is positive, the upper signs in front of pe and Sin (9, - a) apply ; 
the lower signs apply for a negative 6’ . 

The differential equations of motion of the system become 

W--J--1/sin26-nna, cp'=(e-l)c0.56 --7&gTZCOS6 

**=1+&j (2.5) 
The domain of definition of the problem is specified by the condition sin2 6 - 

- ?zs > 0. Since 1 sin 6 1 < 1, it follows that the coefficient n can assume the values 
-I< ?Z < 1, and the Lagrange multiplier p varies from + 0.5 fo - in. Each spe- 

cific n(I n I -$ 1) corresponds to a specific motion of the system; variation of the 

angle 6 is restricted by the condition 1 sin 6 1 < n. Since sin 6 is a positive quan- 
tity, we can assume that the angle 6 is restricted by the condition 

arc sin n < 6 f 5t - arc sin n (2.6) 

Equations (2.5) are integrable in quadratures. For T,, = 0 we obtain 

co~6=~~l-~~sin(z+d) 
co9 60 

sin 6 = F 1-- (2.7) 
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The upper signs must be taken for a positive @. Figure 2 shows 3 as a function of-c 
for 6s = tisn for values of n from -1 to +1 in steps of 0.1. 

The phase trajectories 6, ‘II, are defined by the differential equation 

The integral of Eq. (2.8) is of the form 

nctg~-rFsin(Azl:+r)V-sin26- ~2-~~~(A~-/-?‘)~~s~ (2.9) 

(4. - n) sin 7 =: T ctg 6a fsin2 60 - n2 , A*=$--% 

The character of the phase trajectories does not depend on the inertial characteristic 

E. Figure 3 shows the phase trajectories on the plane 6, I# for 6, = l/sn. 
The differential equation of the phase trajectory 6, ‘p is 

- L=L -J-(8 - 1) sin0c0s4 dcp 
d0 JfsirP 6 - nL 

(2.10) 

Its integral is 

T-f&-- 1)vsins6,-rP*arccos G--- 
sm fro 

(2.11) 

Equations (2.4),(2.5) and (2.10) enable us to find the control a as a function of 6, 

The parameter n must be chosen on the basis of Eq. (2.9). For specified 6,, &, this 

equation yields a one-parameter family of curves from which we must select the curve 
passing through the required point with the coordinates 6i, $1. Analytically this con- 

dition is exvressed bv the equation 

sin Asp I/sinz& - nz J/sin”@, - nz & COS A+ cos 6x l/sins6, - n' f 

T cos A$ cos 6, -m + sin A$ cos tkl cos e. = 

= Tnc$$$l/sin26,--n2& 

from which we can compute n. The upper 
signs in (2.8)-(Z.13) must be taken for 

a positive 6’. 
It is sometimes more convenient to 

select the parameter n graphically. 
The phase trajectories for different per- 

missible values of n (1 nl < sin 6,) 
and for6,of differing sign must be con- 
structed on the phase plane 6, q for 
each initial value 6’. The final point 

with the coordinates fii, A$ = ql- t&, 
can be found on the same plane; the 

Fig. 2 
value of TZ for the trajectory passing 
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through it can be calculated by interpolation. 
The problem always has a solution. The only special case is 6s = 0 or 6, = n. We 

note that the domain of possible parameters n contracts as the initial point moves away 

from the straight line 6, = ‘/sn . The n thus chosen must be substituted into Eq. (2.12) 
in order to obtain the corresponding mode of variation of the control a. The same n 
determines the equations of motion of the system. The rotation time ‘6r can be deter- 

mined from (2.7) by setting 6 = 6,. 

Fig. 3 

3. Variation of the control onglec. In the initial position (when the sup- 

porting body is in a stationary position) the angles a and p can be denoted by a,,* and 

PO*. They must satisfy the static relations (Eqs. (2.1)) under the assumption that 

6’ = 9’ = I#* = 0, a,* = ‘po, 
PO* = +ll (3.4) 

In the case of optimal control, the corresponding control functions at the start of motion 

of the gimbals, when 6=6,,, cp = ‘ps = 0, are 

PO = iI2 n, cos a, = - n I sin fiO (3.2) 
They clearly differ from PO* = fi,,and a,* = (pr, so that the spin axis must be re- 

orientated prior to the start of rotation from the position defined by the angles a,*, fi,,* 
to the position defined by a,,, fi,, at the maximum permissible amax and fimax . As soon 
as the body has attained the required angles 6t ,*I the wheel must be returned to its 

initial position in inertial space at the maximum permissible a& and p’&. Thus, the 
wheel again bears the entire moment of momentum, and the system stops rotating. The 
angles a,* = (Pl, fir* = 61 (3.3) 
are then clearly different from a,* 

maximum permissible 
maximum permissible moments Mama= and Mb,,,. 

Translated 


